
The Riemann Integral Part 1 - Step functions
Failed to add items
Sorry, we are unable to add the item because your shopping cart is already at capacity.
Add to basket failed.
Please try again later
Add to Wish List failed.
Please try again later
Remove from Wish List failed.
Please try again later
Follow podcast failed
Unfollow podcast failed
-
Narrated by:
-
By:
About this listen
The present episode asks a new question: How can one compute the area under the function graph of a real-valued function defined on an interval? It turns out that this question is not entirely trivial to answer. In order to have a first clear understanding of some pitfalls, we treat an elementary example case first: We discuss the notion of a step function. Then, the area under function graph — the Riemann integral — can be computed as a sum of certain rectangles. Before we embark to more challenging situations, we shall see that the so defined integral will be well-defined for step functions.
What listeners say about The Riemann Integral Part 1 - Step functions
Average Customer RatingsReviews - Please select the tabs below to change the source of reviews.
In the spirit of reconciliation, Audible acknowledges the Traditional Custodians of country throughout Australia and their connections to land, sea and community. We pay our respect to their elders past and present and extend that respect to all Aboriginal and Torres Strait Islander peoples today.