Big Data: Principles and Best Practices of Scalable Realtime Data Systems cover art

Big Data: Principles and Best Practices of Scalable Realtime Data Systems

Preview

Try Premium Plus free
1 credit a month to buy any audiobook in our entire collection.
Access to thousands of additional audiobooks and Originals from the Plus Catalogue.
Member-only deals & discounts.
Auto-renews at $16.45/mo after 30 days. Cancel anytime.

Big Data: Principles and Best Practices of Scalable Realtime Data Systems

By: Nathan Marz, James Warren
Narrated by: Mark Thomas, Chris Penick
Try Premium Plus free

$16.45 per month after 30 days. Cancel anytime.

Buy Now for $26.99

Buy Now for $26.99

Confirm Purchase
Pay using voucher balance (if applicable) then card ending in
By confirming your purchase, you agree to Audible's Conditions Of Use and Privacy Notice and authorise Audible to charge your designated credit card or another available credit card on file.
Cancel

About this listen

Big Data teaches you to build big data systems using an architecture designed specifically to capture and analyze web-scale data. This book presents the Lambda Architecture, a scalable, easy-to-understand approach that can be built and run by a small team. You'll explore the theory of big data systems and how to implement them in practice. In addition to discovering a general framework for processing big data, you'll learn specific technologies like Hadoop, Storm, and NoSQL databases.

Web-scale applications like social networks, real-time analytics, or e-commerce sites deal with a lot of data, whose volume and velocity exceed the limits of traditional database systems. These applications require architectures built around clusters of machines to store and process data of any size, or speed. Fortunately, scale and simplicity are not mutually exclusive.

This book requires no previous exposure to large-scale data analysis or NoSQL tools. Familiarity with traditional databases is helpful.

What's inside:

  • Introduction to big data systems
  • Real-time processing of web-scale data
  • Tools like Hadoop, Cassandra, and Storm
  • Extensions to traditional database skills

About the authors: Nathan Marz is the creator of Apache Storm and the originator of the Lambda Architecture for big data systems. James Warren is an analytics architect with a background in machine learning and scientific computing.

PLEASE NOTE: When you purchase this title, the accompanying PDF will be available in your Audible Library along with the audio.

©2015 Manning Publications (P)2015 Manning Publications
Computer Science Data Science Programming Programming Languages Software Development & Engineering Machine Learning Architecture Software Development Software

What listeners say about Big Data: Principles and Best Practices of Scalable Realtime Data Systems

Average Customer Ratings
Overall
  • 5 out of 5 stars
  • 5 Stars
    1
  • 4 Stars
    0
  • 3 Stars
    0
  • 2 Stars
    0
  • 1 Stars
    0
Performance
  • 5 out of 5 stars
  • 5 Stars
    1
  • 4 Stars
    0
  • 3 Stars
    0
  • 2 Stars
    0
  • 1 Stars
    0
Story
  • 5 out of 5 stars
  • 5 Stars
    1
  • 4 Stars
    0
  • 3 Stars
    0
  • 2 Stars
    0
  • 1 Stars
    0

Reviews - Please select the tabs below to change the source of reviews.

In the spirit of reconciliation, Audible acknowledges the Traditional Custodians of country throughout Australia and their connections to land, sea and community. We pay our respect to their elders past and present and extend that respect to all Aboriginal and Torres Strait Islander peoples today.